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Abstract 
 
Vented fixtures have been used extensively for erosion/erosivity investigation for many years.  
The fixtures can assist in quickly assessing materials/propellants and interactions as well as 
understanding mechanisms of erosion.  In this report, two fixtures are modeled—a 37-mm 
fixture at the U.S. Army Research Laboratory and a 200-mm3 bomb with a 1-mm vent hole, 
located in Canada.  Both fixtures erode a nozzle-type insert.  The 37-mm fixture is designed to 
maintain a steady erosion quantity over repeated firings, with relatively small throat cross-
sectional area change, which enables some insight into possible mechanisms.  Each interior 
ballistic model required modifications to the interior ballistic code to enable a variable throat exit 
for the orifice.  The Canadian fixture has a 1-mm vent hole, which has a tendency to enlarge 
considerably during firing.  The dominant erosion mechanism for the Canadian fixture is shown 
to be melt wipe, while for the 37-mm fixture, it is primarily thermochemical.  A redesign of the 
Canadian fixture to permit a larger exit orifice with a rupture diaphragm would enable 
thermochemical differences in the propellants to reveal themselves better. 
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1. Introduction 

The vented fixture has been applied to gun tube erosion since WWII (Ritchie 1942).  Vented 
fixtures typically consist of an initially closed vessel, which has a vent port and diaphragm.  
Upon ignition of the propellant in the fixture, the pressure rises until the rupture pressure is 
reached and the diaphragm is ejected.  The flow of combustion products past a test sample is 
then used to gage the erosivity of a particular propellant or erosion resistance of a particular 
material or coating through measurements such as diametral change, sample mass loss, etc.   

This current study focuses upon the modeling of various vented fixtures, namely the U.S. Army 
Research Laboratory (ARL) 37-mm fixture, and a Canadian fixture using two radically different 
propellants—M30 (triple base) and M43, and nitramines in each fixture.  Finite rate chemistry 
has been incorporated into the ARL Gun Tube Erosion code (ATEC) and reported (Conroy and 
Nusca 2001; Conroy et al. 2000).  Previously, there was a melt-wipe model (Weinacht and 
Conroy 1996), followed by a generalized equilibrium model (Conroy et al. 1997, 1998, 1999).  
The melt-wipe description enabled very severely eroding systems to be modeled (Conroy et al. 
1997, 1999); however, it did not account for the effects seen in spite of the lower adiabatic flame 
temperature of the M43 to that of the M30.  The erosivity of the M43 is typically higher (Ward et 
al. 1981).  This behavior conflicts with previously held beliefs and correlations, which were 
based only upon flame temperature. 

2. Experimental/Numerical Results 

Beginning with the modeling efforts focused on the 37-mm ARL erosion fixture, a general 
diagram is presented in Figure 1, and a similar photograph is presented in Figure 2.  Note that 
there is a rupture diaphragm downstream of the experimental test section shown in Figure 1.  The 
material used in the experiment is from an M68 tank cannon. 

As was stated, both M30 and M43 propellants were fired in this fixture, and the resulting 
pressure-time curves, along with matching Express Kinetics Traveling Charge Code (XKTC) 
calculations (Gough 1990), are presented for both M30 and M43 propellants in Figures 3 and 4, 
respectively.   

The chamber volume for the 37-mm ARL fixture is 356 cm3, with 73.2 g of M30 resulting in a 
loading density of 0.205 g/cm3 for the M30 firing and a loading density of 0.189 g/cm3 for the 
M43 firing.  These loading densities were determined by Leveritt et al. (2000) to produce enough 
pressure to rupture the diaphragm at “burn-out.”  
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Figure 1.  ARL 37-mm erosion test fixture showing test nozzle and rupture diaphragm. 

 

 

Figure 2.  Photograph of ARL 37-mm vented fixture. 

The model to predict erosion has been previously described (Conroy and Nusca 2001; Conroy 
et al. 2000).  The model includes independent heat and mass transport to the surface, avoiding 
assumptions concerning molecular weights of species being the same.  It also has subsurface heat 
and mass transport, along with substrate stress calculations, including surface coating effects and 
their interfacial stresses.  This enables cracks to be formed.  Thermally variable material 
properties are included.  At the interface between the gas and solid phase, a true finite rate 
kinetics calculation is performed using reactions and rates.  The user may supply as many 
reactions and rates as desired.  Beneath the surface and equilibrium reaction, calculation is 
performed to react the diffused gas phase species with the condensed materials.  This results in 
new species with differing properties than that of the original gun material.  Figure 5 provides a 
cartoon of the model. 



 

 3

Time (ms)

0 5 10 15 20 25 30 35

B
re

ec
h 

Pr
es

su
re

 (M
Pa

)

0

50

100

150

200

250

300

M30
Numerical

M30
Experimental/

Numerical

 

Figure 3.  Numerical and experimental pressure for ARL 37-mm vented combustor firing 73.2 g of M30 
propellant. 
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Figure 4.  Numerical and experimental pressure for ARL 37-mm vented combustor firing 67.3 g of EX99 
propellant. 
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Figure 5.  Cartoon describing the erosion model. 

Using the interior ballistic output as input to the model for both the EX99 and M30 firings 
resulted in the erosion prediction shown in Figure 6.  It is interesting that even though both the 
loading density and adiabatic flame temperature were higher for the M30, the erosion was 
greater for the EX99 propellant.   

 

Figure 6.  Numerical prediction of ARL 37-mm vented fixture nozzle recession firing M30 and EX99 
propellant.
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Figure 6 also includes a contour of the original nozzle shape.  The maximum erosion can be seen 
to occur in the entrance portion of the nozzle.  The erosion is minimal where the axial gas 
velocities are low, such as at the entrance edge of the nozzle.  The integrated material mass loss 
was very close to that of the experiment. 

The second vented fixture examined numerically was the Canadian fixture, which is a different 
configuration than the ARL fixture (Beaupré et al. 2001).  Figure 7 shows a schematic of the 
fixture, and Figure 8 shows a photograph including the erosion grain.  The specifications of the 
chamber are 200 cm3, no rupture disk, and an erosion grain, which chokes the flow.  The erosion 
grain is 20 mm long H 19 mm in diameter, with a 1-mm hole drilled through, made of an agreed 
upon material from an M68 tank cannon.  Firings were performed with both M30 and EX99 
propellants.  A representative firing for each was chosen for modeling purposes.  (Note:  
experimental data and photos were included with permission from Dr. Louis-Simon Lussier of 
the Defence Research Establishment of Valcartier, Canada). 

The EX99 firing, of which the pressure time plot is presented in Figure 9, was performed using 
30.2 g of EX99, with a loading density of 0.15g/cm3, and had a maximum pressure of 199 MPa.   
The numerical representation of the fixture, which matches the experimental pressure well even 
through the blow-down period after peak pressure, is also presented in Figure 9. 

The M30 firing result chosen for modeling purposes is presented in Figure 10, where 40.2 g of 
M30 were fired, creating a loading density of 0.20 g/cm3, which resulted in a maximum pressure 
of 268 MPa.  Again, the numerical results are presented and match reasonably well. 

 

Figure 7.  Canadian erosion grain vented vessel. 
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Figure 8.  Schematic of the vented vessel plug containing the erosion grain. 
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Figure 9.  Experimental and numerical pressure for Canadian erosivity fixture firing no. 63 with 30.2 g of 
EX99 propellant. 
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Figure 10.  Experimental and numerical pressure for Canadian erosivity fixture firing no. 83 with 40.2 g 
of M30 propellant. 

The Canadian fixture did not include a rupture diaphragm and therefore had continuous mass 
flux through the orifice for the entire ballistic cycle.  Also, the vent opening was not contoured to 
provide an optimal entrance region for the flow.  Figure 11 shows the resulting computed and 
average experimental erosion values plotted along the vent plug.  Interestingly, the computed 
erosion shows that a curved entrance will result, as seen experimentally in Figure 12 (Beaupré 
and Lussier 2002).  Again, in this fixture, the EX99 shows higher erosivity than that of the M30, 
even though the M30 had a much higher loading density and resulting peak pressure. 

3. Discussion 

The model is versitile enough to handle vented erosion fixtures.  The numerical results are in 
good agreement with the experimental results both quantitatively and analytically.  The EX99 
propellant erodes more than the M30 propellant, even at lower peak pressures and loading 
densities.  Similar results were seen by Ward et al. (1981). 
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Figure 11.  Numerical prediction of Canadian vented fixture nozzle recession firing M30 and EX99 
propellants, with corresponding ballistic pressures provided in Figures 9 and 10. 

 

Figure 12.  Before and after photos of Canadian nozzles firing M30 propellant (after Beaupré and Lussier 
[2002]). 

The mechanism exercised in the ARL fixture was primarily chemistry-driven modified material 
melt wipe in which the material had a considerably lowered melt temperature from that of the 
virgin gun steel.  The mechanism in the Canadian fixture involved both chemistry as well as 
melting of the bulk material at the peak of the ballistic cycle.  The reason for the higher mass loss 
of EX99 over M30 is due to the composition of EX99, resulting in more carbon monoxide (CO) 
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production than that of M30.  This is evident in both the Canadian and ARL fixtures.  The 
CO/carbon dioxide (CO2) ratio for EX99 is 7.78, while that for the M30 is 3.1 (Leveritt et al. 
2000).  This additional CO makes more CO available on the surface for dissociation.  The 
dissociated CO then provides free carbon for absorption into the steel lattice, which then forms 
iron carbides with a much reduced melt/softening temperature, 1423 K, than that of the virgin 
material with a melt/softening temperature of about 1723 K. 
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  WATERVLIET NY 12189 
 
 4 PRIMEX 
  E J KIRSCHKE 
  A F GONZALEZ 
  J DRUMMOND 
  D W WORTHINGTON 
  PO BOX 222 
  SAINT MARKS FL  32355-0222 
 
 2 PRIMEX 
  N HYLTON 
  J BUZZETT 
  10101 9TH ST NORTH 
  ST PETERSBURG FL  33716 
 
 2 ROCKWELL INTRNTL SCIENCE CTR 
  DR S CHAKRAVARTHY 
  DR S PALANISWAMY 
  1049 CAMINO DOS RIOS 
  PO BOX 1085 
  THOUSAND OAKS CA 91360 
 
 1 G & A KELLER  
  84 WEST WALNUT ST 604 
  ASHEVILLE NC  28801-2816 
 
 1 PRIMEX 
  DIR LARGE CAL R&D 
  E STEINER 
  PO BOX 127 
  RED LION PA  17356 
 

ABERDEEN PROVING GROUND 
 
 1 CDR USAATC 
  STECS LI  
   R HENDRICKSEN 
 
 10 DIR USARL 
  AMRSL WM 
   B RINGERS 
  AMSRL WM B  
   A HORST 

  AMSRL WM BD 
   M NUSCA 
  AMSRL WM BC 
   P PLOSTINS 
   M BUNDY 
   J GARNER 
   P WEINACHT 
  AMSRL WM MC 
   J MONTGOMERY 
   J BEATTY 
  AMSRL WM MB 
   L BURTON 
 
 


